PREDIKSI TINGGI GELOMBANG LAUT JAKARTA UTARA MENGGUNAKAN MACHINE LEARNING: PERBANDINGAN ALGORITMA ARIMA & SARIMA
نویسندگان
چکیده
Dalam melakukan prediksi gelombang laut beberapa hari kedepan memerlukan keakuratan yang tinggi. Maka dari itu, perkembangan Machine Learning dapat digunakan untuk memprediksi kondisi laut. Representasi mengenai tinggi menentukan keputusan kapal dalam rute pelayaran maupun memungkinkan nelayan berlayar atau tidak. Penelitian ini dilakukan di wilayah Laut Jakarta Utara. perhitungan tersebut menggunakan algoritma ARIMA dan SARIMA. Hasil kedua dibandingkan kemudian akan mengambil hasil akurasi terbaik berdasarkan nilai RMSE dihasilkan. Data diambil tahun kebelakang (tahun 2015-2020) melatih model agar mendapatkan lebih baik. pengujian telah dilakukan, didapat & MAE berturut-turut sebesar 2,14 4,18 Sedangkan SARIMA menghasilkan secara 4,52 8,18.
منابع مشابه
Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
متن کاملSistem Informasi Pengarsipan Menggunakan Algoritma Levensthein String pada Kecamatan Seberang Ulu II
Archival information systems in government agency is one of the most used applications for daily acitivities. One feature in application management information document is searching. This feature serves to search for documents from a collection of available information based on keywords entered by the user. But some researches on a search engine (searching) concluded that the average user error...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملPerbandingan Shell Unix
Is it possible for an Information Technology [IT] product to be both mature and state-of-theart at the same time? In the case of the UNIX system, the answer is an unqualified "Yes." The UNIX system has continued to develop over the past twenty-five years. In millions of installations running on nearly every hardware platform made, the UNIX system has earned its reputation for stability and scal...
متن کاملHybrid ARIMA-Support Vector Machine Model for Agricultural Production Planning
In this study we develop the hybrid models for forecasting in agricultural production planning. Real data of Thailand’s orchid export and Thailand’s pork product are used to validate candidate models. Autoregressive Integrate Moving Average (ARIMA) is also selected as a benchmarking to compare other developed models. The main concept of building the models is to combine different forecasting te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Teknologi Informasi dan Komunikasi
سال: 2023
ISSN: ['2598-9707', '2087-0868']
DOI: https://doi.org/10.51903/jtikp.v14i2.650